Inhibitory effects of oxymatrine on TGF-β1-induced proliferation and abnormal differentiation in rat cardiac fibroblasts via the p38MAPK and ERK1/2 signaling pathways
نویسندگان
چکیده
Interstitial fibrosis serves a causal role in the development of heart failure following acute and chronic myocardial infarction, and anti‑fibrotic therapy represents a promising strategy to mitigate this pathological process. Oxymatrine (OMT) exerts a number of pharmacological effects on the cardiovascular system, but its anti‑cardiovascular disease mechanisms remain unclear. The purpose of the present study was to investigate the effect of OMT administration on transforming growth factor (TGF)‑β1‑induced cardiac fibroblast (CFB) proliferation and abnormal differentiation, and to elucidate the underlying mechanisms. Primary CFBs were isolated from neonatal rats and used for experimental treatments. TGF‑β1 stimulation in CFBs resulted in increased proliferation, increased α‑smooth muscle actin (SMA) and type I and type III collagen expression, and increased p38 mitogen‑activated protein kinase (MAPK) and extracellular signal‑regulated kinase (ERK)1/2 phosphorylation. Treatment with OMT and SB431542 (a TGF‑β1 receptor inhibitor) attenuated the proliferation and abnormal differentiation of CFBs induced by TGF‑β1, and decreased p38MAPK and ERK1/2 phosphorylation. In addition, treatment with SB203580 (a p38MAPK inhibitor) or PD98059 (an ERK1/2 inhibitor), but not by SP600125 (a c‑jun N‑terminal kinase1/2/3 inhibitor), inhibited the TGF‑β1 stimulated CFB proliferation, as well as the elevation of α‑SMA and the deposition of type I and type III collagen, suggesting that ERK1/2 and p38MAPK signaling may be important in the in the process of myocardial fibrosis. In conclusion, the present study revealed that OMT treatment inhibited CFB proliferation and the CFB‑myofibroblast transition induced by TGF‑β1, at least in part through inhibition of ERK1/2 and p38MAPK signaling.
منابع مشابه
Inhibitory effects of enalaprilat on rat cardiac fibroblast proliferation via ROS/P38MAPK/TGF-β1 signaling pathway.
Enalaprilat (Ena.), an angiotensin II (Ang II) converting enzyme inhibitor (ACEI), can produce some therapeutic effects on hypertension, ventricular hypertrophy and myocardial remodeling in clinic, but its precise mechanism, especially its signaling pathways remain elusive. In this study, cardiac fibroblasts (CFb) was isolated by the trypsin digestion method; a BrdU proliferation assay was adop...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملAnti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD
Objective(s): Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-β1)/Smad2 si...
متن کاملOxymatrine inhibits aldosterone-induced rat cardiac fibroblast proliferation and differentiation by attenuating smad-2,-3 and-4 expression: an in vitro study
BACKGROUND We previously demonstrated oxymatrine, an alkaloid from the Chinese medicine radix Sophorae flavescentis, ameliorates hemodynamic disturbances and cardiac fibrosis; however, the underlying mechanisms are unclear. Here, we investigated the effect and mechanism of action of oxymatrine on aldosterone-induced cardiac fibroblast to myofibroblast differentiation in vitro. METHODS Cardiac...
متن کاملEmodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation
Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibite...
متن کامل